The Structure of Visual Content
Gabriel Greenberg, March 30, 2024

In the vast landscape of representational forms, visual representations stand out as a natural class. States of visual perception, mental imagery, and visual memory; pictorial artifacts like photographs, drawings, and maps; the feature maps of computer vision models—all seem to express a common type of visual content. In visual content, the attribution of properties and relations to objects is governed by spatial and perspectival organizing principles. It is widely accepted that visual content of this kind determines conditions of accuracy. Yet it also seems that such content cannot be propositional, at least not if propositions are understood to have language-like structure. But if the structure of visual content is not propositional in this sense, what is it? Does visual content have a distinctive form? This is the question this paper aims to address.1

A natural starting point is to conceive of visual content as a kind of visual space in which objects and properties occupy locations, and where the dimensions of this space are defined in relation to a central viewpoint. Many have interpreted these ideas metrically, conceiving of visual space as a three-dimensional metrical volume, analogous to physical space.2 In Peacocke’s (1992, ch. 3) theory of scenario content, for example, objects are situated in perceptual space at determinate depths and directions relative to an origin point within a polar coordinate system. Although this spatially extended model captures important insights about the structure of visual space, I will argue that it ultimately imposes too much structure. Its rigid metrical shape is at odds with ubiquitous perception of indeterminate depth.

Motivated by these considerations, this paper proposes a revision of scenario content, introducing instead a more flexible conception of visual space in the form of a view space. View spaces are two-dimensional directional arrays, where each direction corresponds to a line of sight. Objects, properties, and relations are located within regions of this array. A distinctive feature of view spaces is the prioritization of visual direction as a core structural aspect of visual space, while visual depth is demoted to the status of a variably represented feature, akin to color, texture, shape, or motion. This re-conception of visual space introduces a degree of structural flexibility which

Acknowledgements: This paper has benefited from conversations with colleagues and students over many years, and from audiences at the Institut Jean-Nicod, University of Turin, London Aesthetics Forum, Eastern APA, Philosophy Mountain Workshop (with comments from Cian Dorr), Australian National University, Berkeley perception reading group, and the Toronto CPA. Thanks to Bill Kowalsky and Esther Ma for research and editorial assistance, and to Jeff King, who first posed to me the question this paper attempts to answer.

1Thus the focal question concerns the nature of visual content, not the representational vehicles that carry this content. As a result, the present discussion does not bear directly on the question of the “format” of perception and mental imagery, which is typically defined, in part, in terms of the structure of the underlying representational vehicles. See e.g. Goodman 1968, pp. 225–232; Camp 2007, pp. 154–160; Quilty-Dunn 2019, pp. 3–6.

2See e.g. Marr 1982, pp. 275–283; Peacocke 1992, ch. 3; Matthen 2005, pp. 271–289; see Wagner 2012, chs. 2-3 and Galebach 2018, ch. 1 for critical reviews.
smoothly accommodates perceptual depth indeterminacy, while preserving a distinctively visual structure, and cohering with computational and psychological perspectives on vision.

The plan for the paper is as follows. Section 1 reviews existing approaches to visual contents along with cases of spatial perception that raise challenges for them. The theory of view spaces is introduced in Section 2, as a revision of metric scenario content. Section 3 defends the theory’s key architectural assumption, that direction is a structural aspect of visual content, while depth is a represented feature. Section 4 discusses the integration of view space theory with our current scientific understanding of visual processing. Section 5 revisits the distinction between propositional and visual representation.

1 Visual content

This section discusses prominent contemporary approaches to visual content. In Section 1.1, I present possible-worlds analyses and review the motivations for shifting to a more structured framework. Section 1.2 introduces spatial approaches to visual content, focusing on Peacocke’s theory of scenario content as a paradigm. Finally, Section 1.3 highlights structural challenges posed by indeterminate depth perception.

1.1 Accuracy conditions

Like linguistic contents, the contents of visual representations characterize the world as being a certain way, and thereby determine conditions of accuracy. In a possible worlds framework, this means that accuracy for a visual representation is defined relative to a world. It is natural to think that the accuracy of visual representations also depends on the spatial perspective or viewpoint, within a world, relative to which they are evaluated. A given visual representation may be accurate at world w, but only from viewpoint v. For example, a picture might be accurate at a viewpoint v close to a red cube and far from a blue sphere, but inaccurate at v', close to the blue sphere, but far from the red cube. In this spirit, we may think of the accuracy conditions of visual representations as sets of viewpoint-centered worlds— that is, as sets of pairs of worlds and viewpoints.

The unstructured approach to visual content simply identifies visual contents with visual accuracy conditions. All and only those viewpoint-centered worlds relative to which a given visual representation is accurate are included in its content. This is the counterpart of unstructured possible-worlds approaches to linguistic content. Theories of this kind are already familiar in the perception literature, and have gained traction in the philosophy of depiction.3

Such a view has its virtues: it provides an elegant framework in which accuracy and inac-

3For unstructured approaches to perceptual content, see Chalmers 2006; Brogaard 2011. For pictorial content, see Ross 1997; Blumson 2009; Greenberg 2011; Abusch 2015; Greenberg 2021.
accuracy, as well as relations of entailment and consistency, can be defined in straightforward, set-theoretic terms. In addition, by rendering contents in the universal lingua franca of possible worlds, the theory makes the contents of visual and linguistic representations commensurable, elucidating semantic relations among representations of different perceptual modalities, between perception and thought, and between language and depiction. Thus, for many purposes, the unstructured approach to visual content identifies an important level of abstraction.

Nevertheless, insofar as we are seeking out an account of the nature of visual content specifically, the unstructured account has certain built-in limitations of explanatory adequacy. Precisely because it paints with such a general and modality-independent brush, unstructured content cannot provide an account of what is distinctive of visual content. Visual contents exhibit a characteristic spatial cohesiveness and perspectival organization. But nothing in the unstructured theory anticipates or explains this fact. Arbitrary sets of centered-world exhibit no necessary spatial coherence. Even the viewpoints that make up the “centers” of each centered-world may be completely disjointed in space from one another; so arbitrary sets of centered-worlds have no perspectival organization.

These observations are sufficient to motivate the search for a more structured account of visual content, one that captures what is distinctive of visual content. Such an account should, at least, give some sense of the spatial connectedness and the perspectival organization of visual content. The theory of visual content taken up in the second half of this paper aims to fulfill this mandate. It is not my goal here to argue against unstructured visual content once and for all. Indeed, my own view is pluralistic, allowing multiple levels of content for visual representations, just as multiple levels of abstraction are appropriate for any complex system. My contention instead is that there are aspects of content which cannot be captured at the unstructured level, and that these should be recovered at a further, structured level of visual content.

Besides their inherent explanatory limitations, unstructured approaches to visual content also face issues of descriptive adequacy. In a variety of cases, visual contents seem to mark distinctions more fine grained than are available with sets of centered-possible worlds, so cannot be described within the possible worlds framework. For example, differences in perceptual orientation (e.g. percepts of square vs. diamond), without any other changes to the spatial environment, resist modeling in terms of possible worlds. Further argument can be made for the perception of spatially impossible objects. Since the unstructured view builds contents from possible worlds, as a matter of course, it is at a loss to characterize impossible contents of perception.

4Peacocke (1992, pp. 75–76) draws attention to examples of variations in the perception of shape orientation, which are clearly represented by the visual system and phenomenologically accessible, but do not make a difference to accuracy conditions. As Macpherson (2006, pp. 98–101) observes, the distinction cannot be teased apart modally, because every metaphysically possible situation in which a regular diamond is present is also one in which a tilted square is present, and vice versa. Parallel points extend to percepts of grouping.

5A number of potential examples have been noted in the literature, including: (i) the waterfall illusion (Crane 1988; Siegel 2016); (ii) overlapping reflections; (Matthen 2005); (iii) the two-fold character of picture perception (Wollheim 1987;
Although these descriptive issues won’t be my primary focus in what follows, they are an important motivation for including, within visual content, some atomistic and quasi-propositional elements, along with a more geometric spatial structure.

1.2 Metric visual content

Whereas unstructured theories of content reify the conditions under which a representation is accurate, structured approaches aim to capture the form of content itself. In the case of visual content, this structure may be conceived as a visual space: a collection of individuals, properties, and relations organized in three-dimensional spatial relations around a viewpoint.

The most straightforward realization of this idea construes visual space as one of the familiar spaces of geometry; such a space is governed by a metric, a relational structure of distances that give it shape. In a metric visual space, every object and property lies at a determinate distance and direction from the viewpoint, and thus from each other. Such spaces are only partial, in the sense that they do not contain fully occluded objects or objects outside of the visual field, but they are nevertheless fully committal with respect to metric properties of the objects they contain, including their size, shape, distance, and direction. Metric visual spaces are the sorts of things from which one could build a physical model by placing a model of each represented object at a determinate distance and direction from a defined origin.

Spaces of this kind seem to figure in accounts of the visual system that describe it as generating representations that reconstruct a three-dimensional model of the external world given the retinal input. Something like this view is commonly presupposed in vision science, where the output of perceptual computation is thought to be mapped to a three-dimensional coordinate space. When it is assumed that object locations are represented by coordinates in a coordinate space, a metric conception of visual content is presupposed.

This idea finds especially complete philosophical expression in Peacocke’s (1992, ch. 3) theory of scenario content. Peacocke understands perceptual contents in terms of scenarios, glossed as “ways of filling out space.” A scenario is defined as coordinate space for which (i) an ego-centric

6See Galebach 2018, pp. 7–26 for a critique of “visuo-perceptual metric space” and a review of arguments for it. Note that, in discussing metric visual spaces, I make no special assumption about the kind of metric at work. Over the years, philosophers and scientists have variously suggested that visual space is Euclidean, spherical, and hyperbolic. See e.g. J. J. Koenderink, Van Doorn, and Lappin 2000, pp. 69–71; Suppes 2002, pp. 282–382; Todd and Norman 2003, pp. 41–44; Meadows 2011; Wagner 2012, chs. 4-5; Masrour 2017, pp. 6–9; Galebach 2018, pp. 26–29. But because these findings are generally based on the comparison of judgements across two or more fixations, it is unclear to what extent they bear on visual representation specifically, as opposed to the post-visual scene representation.

7Galebach 2018, p. 6.

origin, axes, and polar coordinate system have been identified (p. 62); and (ii) for every distance and direction from this origin, the presence or absence of a surface is specified, along with the surface’s orientation, texture, color, illumination, solidity, and motion (p. 63). Officially, Peacocke defines scenario content as a set of scenarios, where the shift to sets is intended to capture variation in perceptual acuity (p. 63). For now, I’ll assume the simpler identification of scenario contents with individual scenarios, but I reprise the issue in the next section.

Peacocke’s account of scenarios does not, on its own, resolve the issues of descriptive adequacy raised in the previous section. To handle these, Peacocke introduces a second layer of perceptual content, made up of protopropositions, elementary structures that each contain an individual and a property, or a series of individuals and a relation (p. 77), with the constraint that the individuals in question be inhabitants of the lower-level scenario (p. 79; p. 241, n. 11). The idea is that the properties involved in protopropositions are sufficiently fine-grained to distinguish among physically identical ways of “filling out space.” Thus, differences in object orientation (tilted square vs. un-tilted regular diamond), as well as differences in perceptual grouping, are to be accounted for by variation at the level of protopropositions. Likewise, the fine-grainedness of protopropositions, as well as their independence from one another, is leveraged to capture impossible contents (p. 79).

As for the basic challenge of explanatory adequacy that faces unstructured content, scenario content resolves this by making the spatial organization imposed by an origin, axis, and polar coordinate system part of its essential structure. There is no problem with explaining why arbitrary collections of possible worlds, or arbitrary collections of propositions, fail to define visual contents, for only highly constrained subsets of these correspond to genuine scenarios. Nevertheless, I believe that scenario content is something of an over-correction, for it introduces too much structure, demanding rigidity in visual content where we should have flexibility.

1.3 Indeterminate depth

The ubiquitous phenomenon of indeterminate depth perception poses a central challenge for any metric approach to visual content, including that of scenario content. The clearest instance of the problem arises in the perception of indeterminate depth.

Under ideal viewing conditions, depth perception is nearly absolute, especially for nearby objects—that is, the visual system represents precise distances between objects and the view-

9 Although Peacocke’s subject is perceptual content in general, I will focus on its application to visual content. In this context, the ego-centric origin of the coordinate system in a scenario plays roughly the role I’ve ascribed to viewpoint above.

10 The use of protopropositions to address impossible spatial contents sits somewhat awkwardly within the scenario content framework. The analysis requires that the same kinds of spatial properties—like depth, orientation, or shape—which appear in the lower-level scenario must also appear in the higher-level protopropositions in order to represent incompatible attributes. This raises questions of when properties and relations are reduplicated at both levels, and to what extent they should be. These are not fatal problems for the theory, but pitfalls I hope to avoid in the positive proposal below.

§1 Visual content
But more often than not, perception is partially indeterminate with respect to metric depth. For example, there is the perception of approximate depth, where you perceive an object as located within some range of distances from the viewpoint, but not at any particular one. And especially important for our argument is the perception of merely relative depth, where you perceive one object as behind another, but not by how much.

Indeterminate aspects of depth perception have been widely studied in psychology. But they are already phenomenologically vivid to the human observer in cases where the visual information necessary for absolute depth perception is unavailable. Consider the perceptual experience one would have when looking at the scene photographed below from a stationary position. One might have nearly absolute depth perception of the grass beneath your feet (G) or the nearby pine bough (E). But the mid-ground and background afford less precision. We can see that the mountains in the background (C) are further away than the mid-ground trees (F), but we have no sense of exactly how far. Likewise, for the clouds (D), whose details we can make out distinctly, we have no specific perceptual estimate of their distance from the viewpoint.

Perceptual scientists have documented a wide range of depth cues exploited by the visual system. Some, like accommodation and convergence, can be used to compute the absolute depth
of nearby objects. But other cues, like occlusion, relative size, and texture gradients, provide only relative depth information. For example, occlusion tells us that the mountains (C) are more distant that the mid-ground trees (F), but not by how much. In general, indeterminate depth perception arises when there is sufficient visual evidence to determine that one object is further away than another, but insufficient information to determine how much further.

To dramatize the point, consider a visual environment, like Figure 1.3 below, that has been stripped of most natural depth cues, including motion, binocular information, height above the horizon, texture gradients, and familiar size. The scene nevertheless supports robust relative depth judgements, which seem to be grounded largely in cues of occlusion and relative size. For example, relative size clearly indicates that orb A is more distant than orb B, while occlusion shows that orb D is more distant than orb C.

![Figure 2: An alien view. (Made with Adobe Firefly.)](image)

Indeterminacy with respect to depth typically implies indeterminacy about size as well, since if a given object (like a distant mountain) is closer, it must be smaller, or if further away, then larger. Depth indeterminacy can also give rise to shape indeterminacy: if a perceiver does not determinately represent the depth relations between the several parts of a single object, she will not determinately represent its overall shape. For example, in the mid-ground tree (B) from Figure 1.3, because of the silhouetting effect, the relative depths of the various branches from the viewer are indeterminate, so the precise overall three-dimensional shape of tree is indeterminate. Thus even relatively rich, mid-level visual perception seems to be capable of indeterminacy about the metric properties of depth, size, and shape.

All of this raises a serious challenge for scenario content, or any account of visual space.

17See H. A. Sedgwick 1986, p. 2.2.6; Palmer 1999, pp. 315–327.
grounded in metric structure. The problem is that scenario content assigns determinate locations to all visible surfaces of all objects relative to a viewpoint. But indeterminacy in the perception of depth, size, and shape undermines this metric specificity. They present perceptual features which could not be captured by a single physical model. The geometrical conception of visual space at the heart of scenario content must somehow be relaxed and revised.

One way to loosen the demands of scenario content is to allow that the locations of objects are given in content as regions of metric space, and objects are represented as located in the world somewhere within the indicated regions. This accommodation makes good sense of approximate depth perception, and plausibly models some cases of size indeterminacy. But even this revision cannot capture merely relative depth perception. Suppose the perceiver represents object Y as further than object X from the viewpoint. In this case, there is no boundary that can be drawn for X and Y respectively that could ensure the required ordinal relation while allowing it to be realized at the full range of distances from the viewpoint.18

A different way out of the problem is suggested in Peacocke’s original formulation. Peacocke’s official notion of scenario content is as a set of scenarios, rather than a single scenario (Peacocke 1992, p. 63). Peacocke introduces this flexibility in order to model variation in perceptual acuity, the degree of clarity or resolution in a perceptual state. But in principle, one could employ sets of scenarios to capture relative depth indeterminacy as well. If the content of a perceptual state was indeterminate with respect to relative depth, it would be modeled by a set of metrically-determinate scenarios that differ only with respect to the depth relation in question.

Yet if scenario content is defined in terms of sets of scenarios, it thereby becomes an unstructured account of visual content, with all that that entails. As with sets of centered-worlds, arbitrary sets of scenarios capture no spatial unity, central perspective point, or organizing spatial dimensions. But then, scenario content alone is no longer in a position to explain these key aspects of visual content. In so far as the move to scenario content is motivated by the goal of providing a more explanatory account of visual content, some additional structure would be needed to specify which sets of scenarios correspond to visual content and which do not. And this structure, evidently, cannot take the strict metrical form of a scenario. But this just leads back to the question of what alternative structure is the right one.

In sum, the account of visual space as metric, exemplified by Peacocke’s scenario content, can only achieve descriptive adequacy with respect to depth indeterminacy by giving up on its explanatory ambitions. This trade-off motivates the search for an alternative conception of visual structure that likewise captures the dimensions of fixity required by visual space but without imposing the over-restrictive structure of fully metric space.

18Consider two cases. First, suppose the X-locations are all nearer the viewpoint than the Y-locations; this accurately guarantees that X is closer than Y, but inaccurately excludes the possibility that X is located further away than anything in the Y-range. Second, suppose the X-locations and Y-locations overlap; then there is no guarantee that X is in fact closer than Y.
2 View spaces

In this section I outline a new account of the structural composition of visual content. It revises scenario content by holding fixed the directional structure of visual space, but relaxing its metrical structure in the dimension of depth; instead, depth is treated as a feature, like color, shape, or texture. This fact ultimately explains why depth can be indeterminate, like other visual features, and also why depth attributions can be spatially inconsistent. I refer to the resulting conception of visual contents as view spaces. View spaces are abstract structures populated with concrete objects, properties, and relations.

View spaces are in many ways the visual counterparts of Russellian structured propositions. Both are object-involving structures, and both determine precise accuracy conditions definable in terms of sets of centered-worlds; in this sense both are nominally “propositional.” Yet whereas structured propositions are fundamentally tree-like, made up of hierarchical binary branches, view spaces are basically array-like, their structure directional and geometrical. In this more specific sense, view spaces are not “propositional” at all, but correspond to a genuine alternative for structured content.

To this end, view spaces can be defined in two stages. First, there is an underlying spatial array, what I will call a view field, the content-level counterpart of phenomenology’s visual field. Second, there are the objects, properties, and relations which inhabit the view field. In what follows, I introduce these elements, then proceed to the definition of accuracy for view spaces and the treatment of depth relations.

2.1 View fields

The basis of a view field is a two-dimensional surface of finite extent and continuous shape, whose specific form will vary among representational systems. We may call it the view plane. (For some cases, this “plane” may be curved.) In monocular human vision, for example, the view plane would form a kind of compressed half-oval, while in pictorial representation, it is normally flat and rectangular. It is divided exhaustively into potentially overlapping cells, which may, in principle, be as small as point-sized. In human vision, such cells would be more densely packed in the center than the periphery, corresponding loosely to the greater focal acuity in the central regions of the visual field. For mechanical depiction, as in digital photography, the cells form a regular grid.

19See e.g. King 2007.
21A comprehensive treatment would include the temporal extension of view spaces, reflecting the temporally extended contents of perception. Over time, view spaces could dynamically evolve, with constrained changes to the view field’s shape and the distribution of objects and properties.
Every point on a view plane is associated with a **perspectival direction** that is oriented into the three-dimensional space surrounding the view plane. (Directions may be defined as rays whose endpoints are the points of the view plane.) The resulting structure is a **view field**. A view field defines a kind of directional space—a space whose “dimensions,” speaking loosely, are directions emanating from a view plane, and whose extent is defined by the size and shape of the view plane. Thus the spatial anchor of view space is not the point-sized origin and axis of scenario content; rather, the counterpart of the “viewpoint” is now a view field.22

What makes the directions in a view field **perspectival** is that they have a kind of uniformity and coherence which is exemplified by linear perspective directions. In linear perspective, if we were to project each direction backwards through the view surface they would converge on a point, as in the traditional conception of a viewpoint. This is illustrated in Figure 4.

22This definition of view field gives a precise rendering of Mathen’s (2005, p. 275) idea that “visual directions constitute an omnipresent grid that overlays every scene, indexing the features represented in it.” Also compare J. J. Koenderink, A. J. v. Doorn, and Wagemans 2011, p. 545: “the pictorial space is a sheaf of depth threads.”
Describing the directional structure of the human visual field is subtle and beyond this paper’s scope. In binocular vision the visual directions of each eye are fused in such a way that the perceptual origin point is the “cyclopean eye” at the midpoint between the two eyes, resulting in a integrated set of visual directions.23 I expect that complexities like this can be accommodated by reasonable extensions of the present account.24

There are other kinds of view fields whose directions do not strictly converge backwards on a point, but still exemplify a perspective-like coherence. Indeed, it is unclear whether the human vision itself follows such a strictly linear perspective.25 Pictures in orthogonal projection, for example, can be interpreted as expressing view spaces whose directions are all at right angles to the view plane. Those in oblique projection are all at the same oblique angle to the view plane; curvilinear perspective, meanwhile, may be understood as involving view fields with curved view surfaces.26

\begin{figure}
\centering
\includegraphics[width=\textwidth]{view_field.png}
\caption{View field with perspectival directions.}
\end{figure}

24See J. Koenderink and A. v. Doorn 2008 for proposed refinements.
26My preferred approach to curvilinear perspective is to treat the the view “plane” itself as curved; in that case, working out the spatial content of a curvilinear picture is partly a matter of mapping its featural content to this curved surface, before locating these features in directional space.
Clearly, linear perspective, orthogonal, and oblique projections describe spaces in different ways. The present analysis locates this difference at the level of content in the overall directional shape of visual space. This is an aspect of view space content that is more fine-grained than accuracy conditions. Each type of image can display the same surfaces, in the same relative positions, plausibly expressing the same accuracy conditions, yet they differ in the overall directional organization of their spatial dimensions. Such a pictorial Frege-case calls for some kinds of “modes of presentation,” rendered here as directional arrays.

It is not clear how to capture these differences in scenario content, or any other model of content that takes the anchor of visual space to be an origin point. Orthogonal and oblique projections require a plane, not a point, of projection. Meanwhile, curvilinear projections are taken from a point, so something else (like an intervening surface) must account for the intuitive difference in content between linear and curvilinear projections. These considerations offer further motivation for the idea that visual content is mediated by a two-dimensional planar surface, and not merely by directions originating at a viewpoint.

2.2 Feature clusters

A view space is a view field populated with objects, properties, and relations. Objects and properties are collected together into feature clusters, defined as sequences containing a single object and a set of properties. Each feature cluster is spatially anchored to the view field by

27The basic idea of a feature cluster is prefigured in much work on visual perception, especially beginning with Treisman’s (1980) proposal that visual features are bound together into unified object representations. A number of philosophers have employed counterparts of the notion of object-property sequences, including “feature clusters” (Z. Pylyshyn 2003, p. 230), “protopropositions” (Peacocke 1992, p. 77), “vectors of symbols” (Tye 2000, p. 91), “feature-placing structures” (Matthen 2014, p. 272), “multiple-slot memory” (E. J. Green and Quilty-Dunn 2017, pp. 678–687), and “noun-phrase
association with a contiguous **cone of directions**: a set of directions that has a contiguous set of cells in the view plane as its footprint. Feature clusters may be associated with overlapping or nested cones; for example, if a complex object is associated with one cone, then each visible part of that object will typically be associated with a strictly nested cone.²⁸

The objects in the feature clusters of a view space correspond to a representation’s singular content, and the properties to part of its attributive content. (The remaining attributive content comes from the structure of the view space itself, along with relations, discussed below.) For present purposes, I treat feature clusters as including concrete individuals and properties as constituents, in the manner of Russellian propositions. But I believe a more fine-grained Fregean view is ultimately called for, where the singular elements are akin to senses or discourse referents.²⁹

Every feature cluster contains at least an object and a set of properties. For low-level visual representations, typical properties might include surface colors, illumination, motion, and attributes like *edge* and *non-edge*. The corresponding objects would be low-level entities like small volumes, patches, and surfaces components. Higher-level representations may attribute properties of depth, shape, objecthood, and basic categories, and the corresponding objects would be relatively high-level entities reminiscent of cohesive mid-sized objects.³⁰

²⁸Overlapping cones are a signature of amodal completion, since the cone of the completed object overlaps the cone of the occluder. In addition, more than one feature cluster can be associated with the same cone; representation of transparent surfaces that are perfectly aligned on the visual field will require this condition. See e.g. Z. Pylyshyn 2003, pp. 192–193.

³⁰See E. J. Green and Quilty-Dunn 2017; E. Green 2018.
Figure 6: A view space, including a view field with two feature clusters, and relation between them.

The inclusion of properties in feature clusters allows view spaces to make fine-grained distinctions, like that between attributions of square vs. diamond. Likewise, the potential for incompatible properties and relations associated with different feature clusters explains examples of impossible content. In this respect, they are similar to Peacocke’s protopropositions.31 Ultimately, it may be necessary to expand the minimalist conception of feature clusters as sequences of objects and properties. A key question is whether there are object-specific aspects of structure that necessarily accompany the presentation of an object in visual content. Candidates include attributions of part-whole structure, volumetric shape, shape skeleton, object-centered coordinate frame, and topological or mereological structure.32 I leave these questions to future work.

The final ingredients needed to define view spaces are relational features. Examples include relations between objects like being the same size as or being a darker color than, but arguably the most important relations in visual representation are those of depth, discussed at greater length below. Unlike monadic features, relations cannot be structurally located within feature clusters, because feature clusters are associated with single objects, while relations hold between objects. Instead, I will conceive of relations as linking feature clusters together, as illustrated in Figure 2.2.

31With one important caveat: in scenario content, protopropositions occupy a distinct level of content, and are not spatially tethered to the scenario content; Peacocke doesn’t say explicitly how they are to be semantically linked. (See Peacocke 1992 p. 241-42, n.11) In view spaces, feature clusters only enter the directional array by association with a region of this array, and this association carries the semantic attribution of visual direction.

2.3 Accuracy

Taken as a whole, a view space locates each of the objects in its feature clusters in a given direction, and attributes to each its associated properties and relations. It is accurate when these attributions are correct. In effect, a view space displays its accuracy conditions across its surface.

To define accuracy more precisely, we may adopt the idea that visual contents are accurate at viewpoint-centered worlds. Since, in the present framework, I have replaced viewpoints with view fields, I will say that a view space \(V \) is accurate relative to a world \(w \) and a positioned view field \(v_w \), which is assigned a definite location and orientation within \(w \).\(^{33}\) Then we can informally define accuracy as follows:

(1) A view space \(V \) is accurate at a world \(w \) and view field \(v_w \) iff, when \(V \) is embedded in \(w \) at \(v_w \), then, for every feature cluster \(F = \langle o, F_1, \ldots, F_n \rangle \) in \(V \): (i) the object \(o \) is located within its associated cone of directions in \(w \); (ii) \(o \) instantiates \(F_1, \ldots F_n \) in \(w \); (iii) \(o \) stands in all of its associated relations to other objects in other feature clusters in \(w \) relative to \(v_w \).

In addition, for an object to be located within a cone is for some part of it to be located in every cell of the cone (that is, the smallest cones which have view plane cells as their bases).\(^{34}\) Variation in acuity across the visual field is the result of variation in the size of the corresponding cells. Where the cells are small, associated objects and properties are given more precise directional locations; as the cells grow in size, the directional locations become less fine-grained.

2.4 Visual depth

View spaces depart from scenario contents, and any metrical conception of visual content, by their differential treatment of depth and direction. To occupy a position in a view space is to occupy a determinate direction relative to the view plane; by contrast, depth is understood as a relational feature, alongside color, texture, and shape, not part of the structure of visual content itself. In view spaces, only a kind of primitive depth is structural: all objects are located in the half-space defined by the directions emanating from the view plane. As a consequence they are represented as somewhere “out there,” though how far “out there” is not structurally defined.\(^{35}\)

To capture more substantive attributions of depth, let us add to our semantic ontology relations between objects and the view plane. For example, an absolute depth relation is a binary relation of determinate distance between an object and the view plane. Given that objects contain multiple points at different depths, I’ll adopt the simplifying assumption that objects have unique...

\(^{34}\)One might experiment with different grades of the object-location relation for specific phenomena such as amodal completion or blur. A stronger relation could require that no part of the object be located outside the cone. A weaker definition would allow that that an object is located in a cone if some part of the object is located within the cone.

\(^{35}\)J. J. Koenderink, A. J. v. Doorn, and Wagemans 2011, p. 543 suggests that this kind of depth perception is at work in the initial stage of viewing an undifferentiated Ganzfeld.
center points. Then, for a given embedding of a view field at a world:

(2) A relation R_m of absolute depth of magnitude m holds between view plane v and object o, $R_m(v, o)$ iff (i) there is a view field direction d that intersects v and the center point of o, and (ii) v is distance m from the center point of o along d.

![Diagram of absolute depth relation](image)

Figure 7: A view space with absolute and relative depth relations.

Relative depth relations are relations between two or more objects and the view plane. Rather than specifying the absolute distance of an object from the view plane, such relations constrain the ordering in depth of the two objects relative to the view plane. We can understand relative depth in terms of relations that locate one object between the view plane and the other object. Then we can define relative depth as follows.

(3) A relation R^* of relative depth holds between the view plane v, and objects o_1 and o_2, $R^*(v, o_1, o_2)$ iff (i) there is a view field direction d_1 that intersects v and the center point of o_1, (ii) there is a view field direction d_2 that intersects v and the center point of o_2, (iii) the distance from v to the center of o_1 along d_1 is less than the distance from v to the center of o_2 along d_2.

The alternative is to think of relative depth in terms of comparative further than and closer than relations. In favor of the between-ness analysis is the fact that visual phenomenology does not seem to recognize a difference between A being more distant than B, and B being closer than A. Thanks to Cian Dorr (p.c.) for noting this challenge, and to Sam Cumming (p.c.) for the resolution in the text. In principle, of course, comparative asymmetries might arise in non-conscious perceptual processing; see Codol 1990, pp. 395–96 for a possible example, and Galebach 2018, p. 27 for discussion.

§2 View spaces
This addition, in effect, gives the answer to the problem of depth indeterminacy raised in the last section. View spaces can include depth information, while also allowing it to be metrically indeterminate, by including relative depth relations like the one defined above.

These ingredients also provide a plausible basis for those impossible visual contents that involve incompatible depth attributions, such as the Penrose triangle (L. S. Penrose and R. Penrose 1958). They correspond to view spaces that simultaneously include depth relations which are not mutually realizable in physical space.37

3 Direction versus depth

In characterizing perceptual content it is natural to make some demarcation between a relatively stable level of structure and the recombinable features which populate this structure. On such a scheme, the structure reflects the distinctive organization of the sensory modality in question—potentially differentiating between visual, auditory, or somatosensory perceptual content—while the features correspond to the specific properties and relations attributed by a given representation on a given occasion.

It is in this spirit that Kant describes the three-dimensional shape of perceptual space as a “necessary representation” (B38) that provides “the form of all appearances of outer sense” (Kant 1781, B42). Likewise, Peacocke (1992, pp. 61–98) marks a distinction between the necessary ingredients of all scenarios—an origin, axes, and coordinate system—on one hand, and the properties and protopropositions that populate them, on the other. The assumption in both cases is that the three-dimensional metric of visual space is part of its structure. This intellectual tradition effectively imports to perceptual space the intuitive conception of objective space, as a kind of three-dimensional metric container populated with objects and properties. While one can distinguish between direction and depth coordinates in such a space, this is just a way of describing unified three-dimensional locations.

The theory of view spaces breaks with this tradition by demoting attributions of depth to the status of feature, while retaining the organization of directions as structural. Put another way, and speaking loosely, it holds onto the X- and Y-dimensions of three-dimensional metric space, but renders distances in what would be the Z-dimension as relational features. We have already seen how these ideas make room in visual content for indeterminate depth attributions. In this section, I argue that four broadly psychological and computational considerations further support a basic bifurcation in the representational status of direction and depth.

In drawing these connections between perceptual processing and content, I assume that a cen-
tral theoretical role for content is to capture the informational properties of representational vehicles at a high level of abstraction. In the present case, my working hypothesis is that the structural aspects of visual content reflect architectural features of the computational system itself, which tend to be invariant and carry content in a way that is implicit. Meanwhile, featural aspects of visual content derive from representational elements of the computational system, which tend to be variable and explicit. The proposal, illustrated in different ways below, is that view spaces build the semantic contribution of visual architecture into the directional structure of content, while the contribution of explicit depth representations are reflected in the featural constituents of content.

3.1 Distributional profiles

Initial evidence for the structural division between depth and direction comes from their distributional profiles, that is, how they vary within and across perceptual states. For example, Matthen (2005, pp. 274–276) highlights the following contrast: (a) in any visual scene, every visual direction (attributed within the visual field) is represented once and only once; whereas (b) it is not the case that in every visual scene, every depth relation (that is ever attributed) is represented once or only once— some depth attributes appear multiple times, in different directions, and many occur only in some but not other visual representations. Points parallel to (b) extend to color, shape, texture, and motion.

From (a), Matthen concludes that “the appearance of a visual direction is not empirically ascertained; it is apriori” (274). Apriority in turn is associated with structure. From (b), on the other hand, he remarks that “distance is beginning to seem more and more analogous to colour, shape, or motion.” (Nevertheless, Matthen continues to make the metric space assumption that every represented surface is assigned a determinate depth.) He concludes:

Visual directions constitute an omnipresent grid that overlays every scene, indexing the features represented in it. This is an updated version of Kant’s argument about space: direction is part of the form of visual representation— this aspect of form arises from the feature maps of early vision— whereas features like red are part of the informative content. (Matthen 2005, p. 275)

Matthen’s observation about the distribution of depths and directions seems to follow from a more general set of facts. To a first approximation, the distribution of directional attributes is a systematic and continuous function of visual field position, whereas depth attributes are not systematically related to visual field position at all, but vary across the visual field in ways that can

38See Hochman 2023 on architecturally encoded content.
40Here is another contrast: visual contents always entail a total set of directional relations (as visual angles) between represented objects, but only a partial set of inter-object depth relations, since objects in different regions of the visual field may be incommensurable with respect to depth.
only be predicted from the input to the visual system. In particular, the directions associated with
the center of the fovea point nearly straight ahead, gradually angling in more eccentric directions
as they approach the periphery of the visual field, following the geometry of optical projection.41
No such generalization relates depth to visual field position.

We can explain the fixed and systematic distribution of directional content by identifying it
with the structure of visual content, and the variable distribution of depth content by identifying
it with features in visual content. The dependence of direction on visual field position is rendered,
at the level of content, as the correlation of directions with points on the view plane.

3.2 Computational profiles

A second set of differences between perception of depth and direction has to do with the
source and computation of visual information.

In the first moments of vision, information about the wavelength of light reflected to the retina
is registered by the activity of photoreceptor cells; but information about the visual direction of
the source of that light is registered by the position of each photoreceptor cell in the overall retinal
layout.42 Thus from the most primitive point, information about visual direction is encoded in a
way that is different from other kinds of visual information.

After the sensation of light, the rest of vision can be thought of as implementing an extended
solution to vision’s well-known inverse problem. The computation of depth is a prime example
of this. Depth attributions are the result of abductive and probabilistic computation, based on
the particular array of optical activation at the retina.43 The same is true for nearly all properties
and relations attributed by the perceptual system: texture, motion, shape, color, and so on. An
outstanding exception is visual direction: since light comes in straight lines, directions are encoded
1-1 by points on the retina; hence, there is no inverse problem with respect to visual direction.

In this account of visual processing we can discern two important differences in the way that
attributions of depth and attributions of visual direction are computationally derived. First there
is the kind of computation involved. In the case of depth, the computation is a form of “best guess”
abduction or Bayesian inference. In the case of visual direction, some computation is involved in
resolving the input of the two retinal fields of binocular vision, but any inferential relations appear
to be deterministic and monotonic.44

Second, there is the source of the information processed in computation. The attribution of
specific colors and shapes, as well as the attribution of depth, is worked out on the basis of visual
cues derived from the incoming visual stream. The computation of such features depends in part

41Note that attention seems to increase the resolution of directional cones in a given region of the visual field, but this
do not distort the underlying distribution of unitary directions. See Carrasco 2011, pp. 1500–1507.

43Landy et al. 1995; Mertan, Duff, and Unal 2022; Palmer 1999, ch. 5.

on information external to the visual system. By contrast, the assignment of visual directions, the shape of the view plane, and the resolution of the view field all depend entirely on internal aspects of the representing system. These include the fixed architecture of the visual system, along with variable inputs from the rotation and accommodation of the eyes, and locus of attention within the visual field.45

In sum, the computations that result in attributions of direction appear highly constrained and internally controlled, while those that result in attributions of depth are comparatively variable and externally dependent. We can see the structural status of direction and the featural status of depth as the content-level signature of these underlying processes.

3.3 Psychological profiles

Recent work in perceptual science standardly draws a distinction between “2D position” (or “XY”-position) in the visual field and “position-in-depth” (“Z”-position). We may suppose that each 2D position corresponds to a narrow cone of directions in three-dimensional space. A wide range of psychological evidence indicates that depth and 2D location are at least processed differently: not only are they sensitive to different cues and conditions, as we have seen, objects’ 2D locations are generally perceived faster and more accurately, and remembered more reliably than their locations in depth.46

Moreover, in a series of papers, Golomb, Finlayson, and colleagues have argued that there is something specifically structural about 2D location, and featural about depth. Golomb, Kupitz, and Thiemann (2014, pp. 2264–2267, 2269–2274) first showed that objects presented at the same 2D location are more likely to be perceived as similar with respect to shape and color, but neither of these attributes influence one another or location attribution in the same way. This result supports the widespread assumption that 2D location plays a special, structural role in constituting object representations.47 Importantly, Finlayson and Golomb (2016, 2017) went on to report that depth is likewise influenced by 2D location, but not vise versa; and that depth does not influence color, making it unlike 2D location, but more like color and shape. They conclude:

Our results suggest that despite the three-dimensional nature of our visual environment, only 2D location information – not position-in-depth – seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. (2016, p. 49)

The broad outline of these claims is anticipated by a range of findings in neuroscience. For example, 2D location is encoded throughout the visual system, including the growing number of

45This is true even for exogenously controlled attention; it is attention itself, not the interpretation of an input, that alters the acuity profile of the visual field. Even after the triggering input is gone, the shift in attention may persist.
46See Kasai et al. 2003; Umemura 2015; Cooper, Ginkel, and Rokers 2016; Qian and K. Zhang 2019; Finlayson and Golomb 2017.
early visual areas found to exhibit retinotopic organization. Specialized sensitivity to depth, on the other hand, seems to be restricted to a handful of mid- and late-stage areas (such as V3A, V3B, V7, and MT). So 2D location and depth processing appear, at the outset, to have distinct neural underpinnings.

A study by Finlayson, X. Zhang, and Golomb (2017) provides specific support for the segregation of depth and direction, through direct fMRI-based comparison. They found that while two-dimensional representations pervade the entire visual processing system, evidence for depth representation emerged only in later processing. Importantly, their findings indicate that direction can be processed without depth, but depth is almost never processed without direction (Finlayson, X. Zhang, and Golomb 2017, p. 515). This suggests that 2D location is essential to visual processing in a way that depth is not.

Together, such evidence points to a pervasive architectural role for 2D location in visual processing, and a more variable, representation-based role for depth attribution. The structure of view spaces reflects this fundamental division of semantic labor.

3.4 Representational format

The differential treatment of depth and direction is anticipated, finally, by the view that representations in visual perception are significantly picture-like. By this I mean at least (i) that the representational vehicle itself has the functional properties of a two-dimensional metrical surface; and (ii) that the metrical organization of this surface encodes information about the environment as a picture does, in part by functioning as an approximate perspective projection of visual space.

I don’t wish to argue for this strong pictorialist hypothesis here, which remains controversial. But the view is at least invited by observable facts of retinotopy, which reveal, at multiple points in the early visual cortex, neural organization which recapitulates the flat, picture-like organization of the retina itself. And it is anticipated by the widespread invocation of feature maps as representations in psychological accounts of early visual processing and in computer vision.

In any case, it is clear that pictures themselves convey both visual direction and visual depth, but do so in radically different ways. This is brought out by the formal semantics of pictures, where the fundamental principle is that each picture is a geometrical projection of the visual space which

48 See Wandell, Dumoulin, and Brewer 2007; Brewer and Barton 2012; Grill-Spector and Malach 2004.
50 Although disparity information is registered in V1, evidence suggests that these do not lead to stereoscopic depth representations until later in processing. See Preston et al. 2008; Cumming and Parker 1997; Barendregt et al. 2015. It remains unclear to what extent depth-related computations, such as amodal completion or robust figure-ground segmentation, occur in early vision. See e.g. Thielen et al. 2019; Zhou, Friedman, and Von Der Heydt 2000; Layton, Mingolla, and Yazdanbakhsh 2012.
51 Wandell, Dumoulin, and Brewer 2007; Brewer and Barton 2012; Grill-Spector and Malach 2004.
52 See e.g. A. Treisman 1986, 1988; Frisby and Stone 2010, ch. 10; Alzubaidi et al. 2021 and Section 4.2 for discussion.
it expresses as content. Such a principle implies an association of each location on a picture’s two-dimensional surface with a direction in three-dimensional visual space, irrespective of the kind of marking found at that location. Thus, a structural feature of syntax—metric location on a two-dimensional surface—is enlisted to encode direction, while other basic aspects of pictorial content, starting with the colors of surfaces, or the presence of edges, result from the interpretation of specific markings. More complex features, such as shape, category, and depth, take both marking and mark configuration (distribution across 2D locations) into account. So direction attribution is not only necessary, inherent in format, in a way that depth is not; it also flows from structural features of syntax, making an apt counterpart to structural features of content.

Pictorialism alone doesn’t rule out the metric space hypothesis, because every object depicted could, in principle, be associated with a determinate depth. But it nevertheless sets up a structural contrast between depth and direction. By necessity, spatial positions in a picture-like representation represent directions. All further features, including depth, are dependent on the distribution of markers in a given representation.

These remarks about the semantic function of pictures carry over directly to informational encodings in the retina, which itself constitutes a two-dimensional surface of light registration. Here, direction information is structurally encoded, but depth is not, and must be computed much later in the visual stream. Thus the retinal layout sets up an initial asymmetry between depth and direction at the earliest points in visual processing. Perceptual states that are down-stream from the retina and preserve its spatial layout will always have direction information available to them, but only have depth if it is computed. In so far as later representations have a pictorial format, the asymmetry of direction and depth information would be sustained.

4 Visual cognition

In this section I highlight two ways the view space account sheds light on foundational questions about the nature of perceptual cognition: first, as a refinement to the doctrine of feature-placing; and second, as an account of how visual content evolves over the stages of perceptual processing.

4.1 Directional feature placing

Philosophers of perception have long thought that, for an object or property to be represented in perceptual experience, it must be assigned a location in perceptual space. This doctrine, known

54 Greenberg 2021, pp. 860–863.
55 It would also introduce a complication into visual computations, since calculations of three dimensional features, like depth, shape, or size, would have to draw spatial information from both explicit representations and representational structure simultaneously.
as **feature placing**, has a history of interpretation and debate.\(^{56}\) The theory of view spaces gives a distinctive take on this issue, which we might call **directional feature placing**: for an object or property to be represented in a visual modality, it must be represented as located in a particular directional cone anchored at the viewpoint, but need not be represented in depth. In effect, feature placing is still required, but only when “locations” are understood as directions, not as points or finite regions of three-dimensional space.\(^{57}\)

The idea that visual perception of an object necessarily involves feature placing has its original support in phenomenology. In normal perception, we never experience a visual object except as located in a particular part of the visual field (hence located in a particular directional cone of visual space).

Such introspective evidence is complemented by empirical work on mid-level object representations known as **object files**, presumed responsible for our ability to track objects in our visual environment. A wide range of studies support the idea that object files are always encoded at specific 2D locations in visual space, and cannot arise in the visual system without such locational encoding.\(^{58}\) Some research, like the work of Finlayson and Golomb (2016, 2017) discussed in Section 3.3, have further suggested that only 2D location, and not 3D position-in-depth, plays an essential role in locational binding. Collectively this research program suggests that late-stage object files are bound to 2D locations at the level of representation. View spaces provide the content-level counterpart of this generalization, in the form of directional feature placing.

Still, the question has sometimes arisen whether even 2D locational binding is really necessary for feature representation. When objects are perceived outside of the focus of attention, featural mismatches become more likely— that is, features are seen in the wrong locations, typically grouped with the wrong objects. These results show that representations don’t always keep objects and features in place. Some early commentators interpreted these findings to mean that it is possible represent features without attributing any location to them at all, an apparent counterexample to feature placing.\(^{59}\) But the emerging consensus is that featural mismatch doesn’t imply that objects features have no place, only that they are assigned to the wrong places; indeed, such false conjunctions are much more likely when two objects occupy nearby 2D locations.\(^{60}\) Further, the fact that perception under taxing conditions results in **errors** of locational attribution, rather

\(^{56}\)See e.g. Strawson 1959, pp. 202–204; Evans 1982, pp. 143–173; Peacocke 1992, 71, 241-242 n. 11; Clark 2000, ch. 2.6, ch. 5; Z. W. Pylyshyn 2007, pp. 91–98.

\(^{57}\)Another distinctive commitment of the view space theory is that features are always attributed to objects, not to locations themselves. Some (e.g. Clark) hold that the features are predicates of places; not so here. Features are predicates of objects (however primitive); but objects are always assigned a location. See Clark (2000, pp. 76–79, 164–166), Clark (2004, pp. 447–453), Matthen (2004, pp. 502–507), and Cohen (2004).

\(^{58}\)See e.g. A. M. Treisman and Gelade 1980; Tsal and Lavie 1993; Z. Chen 2009; Golomb, Kupitz, and Thiemann 2014; Pertzov and Husain 2014; H. Chen and Wyble 2015. See Finlayson and Golomb (2016, p. 49) for discussion and review of the literature.

\(^{59}\)A. M. Treisman and Gelade (1980, p. 126), for example, conclude that such features may be “free floating spatially.” See Galebach (2018, pp. 28–29) for a renewed defense.

than non-specificity, indicates that directional feature placing remains the norm.

A more foundational objection comes from Z. W. Pylyshyn (2007, pp. 79–98), who rejects any kind of feature placing on conceptual grounds, and suggests that information about 2D location is merely registered, not represented. Pylyshyn imagines a complex visual machinery that regularly exploits directional and locational information, but never encodes it in content. Pylyshyn’s austere picture of visual content is plausible if one focuses narrowly on the indexing and binding of object-files, which are his primary concern. But it is less credible in light of the use that object files are put to by the rest of cognition. Object files are more than spatially indexed place-holders; they enable the localization of physical objects in the environment, the basis of all action in space. The binding of object files to 2D locations should be understood in spatial terms, as attributing perspectival directions to objects. Thus we still have good reason to accept the feature placing implications of the view space approach.

4.2 Stages of visual processing

In the course of visual processing, there does not seem to be a single, distinguished representation which expresses the unique content of perception once and for all. Instead, there are many visual representations at different stages of perceptual processing, with different kinds of contents. Thus it is standardly thought that, in its early stages, the human vision system uses dense feature maps that tile the visual field with low-level features, while in later stages, it maintains sparser representations that bind together features and categories into persisting object files. View spaces provide a common template for understanding visual content in these very different representational settings.

To begin, feature maps are normally conceived as two-dimensional arrays, in which each cell contains a distinct symbol or numeral; collectively, these symbols register low-level features uniformly across the visual field. Distinct feature maps are posited for the detection of different feature dimensions, such as shape, color, orientation, boundedness, or motion. Feature maps are invoked variously as structural representations at the level of visual computation, physical structures at the level of neural implementation, and as data structures in computer vision models.

Every feature map can be thought of as directly expressing a view space. The overall shape and layout of the feature map specifies the shape of the view plane, while the locations of the feature symbols give the locations of the corresponding feature clusters as projected onto the view plane. What is left implicit is the relationship between 2D positions on the feature map and

62 For computer vision applications see Fukushima 1980; LeCun et al. 1989; Alzubaidi et al. 2021; for discussion in psychology see A. M. Treisman and Gelade 1980; A. Treisman 1986, 1988; Frisby and Stone 2010, ch. 10.
63 The singular representation of objects does not play an explicit role in the scientific theories that invoke feature maps, such as those of A. Treisman (1986); yet the view space account does require that every feature cluster contains a singular element, so some extension of the scientific account is required. Here, relatively small entities, like edges, patches, or parts of surfaces would typically instantiate the corresponding low-level features represented by feature maps, and these would
directional cones in the view space. This is worked out by reverse projection, essentially like the case of picture-like representations discussed in Section 3.4, save that symbols, not markers, occupy the base positions. Each cell corresponds to the base of a directional cone, or line of sight, projecting out from an implied viewpoint.

The view spaces expressed by feature maps exhibit four distinctive characteristics. (i) Each feature cluster covers a very small region of the view plane. (ii) These feature clusters tile the entire view plane. (iii) All feature clusters contain the same type of property or feature dimension. And (iv) the feature clusters are minimal, with each feature cluster typically containing only a single feature. As we’ll see, all of these characteristics are subject to revision.

In later perceptual processing, so-called object files track the locations of mid-sized objects. Object files collect together the various features of persisting objects into unified and accessible memory registers. A prominent idea is that object files are the result of comparing and collating low-level feature maps, and identifying those clusters of detected features in the visual field likely to correspond to larger objects. As a whole, the object file system is thought to be highly restricted, maintaining only three or four object representations at a time.

Research on visual object representations has tended to focus on the internal characteristics of the memory structures involved, rather than their contribution to the broader representation of scene geometry. Still, it is widely recognized that the construction of object files essentially involves localization within the two-dimensional visual field, as discussed in Section 4.1. While little is yet known of the underlying representation format here, it is natural to interpret evidence for location binding as suggesting representations which fix a small number of object files within a larger visual field. This, in turn, is easily characterized at the level of content as a view space.

View spaces for object files will naturally locate the contents of each object file within a two-dimensional directional array. As only a small number of object files are ever maintained at once, the resulting view space will contain only a small number of total feature clusters. Each feature cluster will typically be associated with a relatively large region of the view plane, in comparison with the cells of low-level feature maps, but these will still fall far short of tiling the entire visual field. So gaps in the view field are inevitable. Even as feature clusters are sparser, they are also much richer, integrating together many different features together at each condensation point. Their singular contents will be something in the family of bounded and cohesive bodies that figure in object cognition. On this scheme, each object file contributes a single rich feature cluster to the view space, via its association with regions of the view plane.

A complementary perspective on late stage perception, especially in the ventral stream, is that

64 See Greenberg (2019) for a formal semantics.
its central function is object recognition—both categorization and unique identification. These processes are thought to take place especially in the inferotemporal cortex (IT).\(^{69}\) IT serves as the main way-point for all processing in the ventral stream, so its representations are reasonable candidates for (one of the) “final” outputs of the visual system. It is widely recognized that the retinotopic layout which characterize earlier layers of vision is largely absent in IT.\(^{70}\) This might lead to the expectation that the representations of IT, thus the visual representations associated with object recognition, are divorced from the detailed spatial mapping that are presupposed by the view space account of visual content.

However, it turns out that IT is highly responsive to 2D object position.\(^{71}\) It appears that, even as object recognition and identification are fine-tuned in IT, so are a wide variety of other, more spatialized properties, including size, pose, and 2D position.\(^{72}\) We can provisionally conclude that the IT representations underlying object recognition are still strongly compatible with the feature placing hypothesis of the view space theory. To be sure, there are different representational strategies employed in late and early stage vision, so the underlying mechanisms which ensure directional feature placing must undergo considerable evolution. Still, to my knowledge, the various representations within the visual system all support the same basic view of its content.

Since mental imagery perforce has its origin in higher cognition, it is reasonable to expect that many aspects of mental imagery representations share basic properties with late stage representations of object recognition and object files. In any case, introspective and behavioral observation supports the conclusion that they support a very similar form of sparse visual content. Mental imagery is likewise known to exhibit global visual organization while eschewing dense “photographic” detail.\(^{73}\) In Dennett’s (Dennett 1969, pp. 132–146) famous example, one is able to visually imagine the tiger, but not to count its stripes. It is plausible that the contents of mental images also exhibit the organization of sparse but rich visual fields that I have attributed here to object representations.\(^{74}\)

In sum, we’ve seen how view spaces might take very different forms at different stages of visual representation. The view spaces of early visual representation are densely packed with uniform and shallow feature clusters. While those of late representations appear to contain sparse arrangements of variable and deep feature feature clusters. Nonetheless, both situate their subject matters within essentially comparable arrays of viewpoint-centered directions; it is this commonality that the framework of view spaces brings to the fore.

\(^{69}\)DiCarlo, Zoccolan, and Rust 2012.
\(^{71}\)See DiCarlo and Maunsell 2003; Hong et al. 2016.
\(^{72}\)Hong et al. 2016.
\(^{73}\)See Block 1983, pp. 653–658.
\(^{74}\)See e.g. Tye 2000, ch. 5 for an analysis of mental imagery in terms of sparse feature maps. Work on visual short term memory likewise suggests gappy scene representations, e.g. Potter 1999; Potter et al. 2014.
5 Mark of the visual

The claim that visual contents are view spaces is intended to get at an essential mark of visual representation: it is part of what it is to be a visual representation that it express content with the structure of a view space. This isn’t meant to be a sufficient condition. At least part of what makes some representations visual isn’t their content, but the fact that they have derived in an appropriate way from the sensation of the ambient optical array. There may also be constraints on the kinds of features that can be represented in visual content, beyond the structural considerations emphasized here. Still, the characterization of visual contents as view spaces offers at least one possible explication of “visual representation.”

Identifying visual representations, in part, by their contents, suggests a degree of autonomy from underlying representational format. Although pictures are prototypical visual representations, the approach pursued here allows that radically different representational formats might still express visual contents. Visual contents might be described algebraically, as digitally encoded feature maps, or via vector embeddings in neural network models (whose semantic features are not well understood). Indeed, a suitably rich linguistic description may be classed as a visual representation, precisely because its contents encode the directions of objects and properties relative to a viewpoint in the manner of a view space. On this construal, although many visual representations are iconic representations, there are likely also non-iconic visual representations—symbolic structures with visual contents.

By the same lights, not all representations with graphical structure are visual; Venn diagrams, for example, lack the necessary spatial content. And not all representations with spatial content are visual; allocentric maps, for example, lack the necessary perspectival organization. Thus the view space approach offers a principled way of distinguishing linguistic, diagrammatic, and map-like representations from the core class of genuinely visual representations.

References

75The derivation may be quite indirect. Instances of visual imagery, for example, aren’t normally caused by immediate optic array; but imagery in general is made possible by a computational system whose function is to produce representations which are.
76Such representations should be distinguished from other kinds of computer graphics, which merely specify a two-dimensional image to be displayed on a monitor. While such displays are a type of picture, the underlying code merely represents the picture itself, not the picture’s content.
Chen, H. and B. Wyble (2015). “The location but not the attributes of visual cues are automatically encoded into working memory”. In: Vision research 107, pp. 76–85.

Lande, K. J. (2020). “Mental structures”. In: *Noûs*.

Quilty-Dunn, J. (2019). “Perceptual pluralism”. In: *Noûs*.

Suppes, P. (2002). “Representation and invariance of scientific structures”. In.

